双纽线: p²(θ) = (25/2)cos(2θ) @
x = p(θ) cosθ, y = p(θ) sinθ
切线斜率为0, 即 dy/dθ = 0
即: p(θ) cosθ + p '(θ) sinθ = 0,
2 p²(θ) cosθ + 2 p(θ) p '(θ) sinθ = 0 @@
由@得:2 p(θ) p'(θ) = - 25 sin(2θ)
代入 @@, 得: 25 cos(2θ) cosθ - 25 sin(2θ) sinθ = 0, 25 cos(3θ) = 0
=> 在第一象限内, θ = π/6 => 切点 (5√3/4, 5/4)
利用对称性,得到其他三个点.