解由fx=f(x+4)
知函数的周期T=4,
又由log2(16)<log2(20)<log2(32)
知4<log2(20)<5
即0<log2(20)-4<1
即0<log2(5/4)<1
即-1<-log2(5/4)<0
故f(log2(20))
=f(log2(20)-4)
=f(log2(20)-log2(16))
=f(log2(20)/16))
=f(log2(5/4))
又由f(x)是奇函数,f(-x)=-fx
知f(log2(20))
=-f(-log2(5/4))
=-[2^(-log2(5/4))+1/5]
=-[2^(log2(4/5))+1/5]
=-[4/5+1/5]
=-1