在三角形ABC中,AB=2根号5,AC=4,BC=2,以AB为边做等腰直角三角形,求CD长(三种情况)

1个回答

  • (1)当AB为斜边时,BD=根号10,CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC+45°)或

    CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC-45°)解得CD=根号2或3根号2

    (2)当AB为直角边时,BD=2根号5,CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC+90°)或CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC-90°)解得CD=2根号2或2根号10

    (3)当AB为直角边时,BD=2根号10,CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC+45°)或CD^2=BC^2+BD^2-2BC*BD*cos(∠ABC+45°)解得CD=2根号13或2根号10