△ABC外接圆半径为√2
R=√2
由正弦定理得
a=2RsinA
sinA=a/2√2
sin^2 A=a^2/8
sin^2 C=c^2/8
sinB=b/2√2
2√2(sinA^2-sinC^2)=(a-b)SinB
2√2(a^2-c^2)/8=(a-b)b/2√2
a^2-c^2=ab-b^2
a^2+b^2-c^2=ab
由余弦定理得
cosC=(a^2+b^2-c^2)/2ab=1/2
C=60
△ABC外接圆半径为√2
R=√2
由正弦定理得
a=2RsinA
sinA=a/2√2
sin^2 A=a^2/8
sin^2 C=c^2/8
sinB=b/2√2
2√2(sinA^2-sinC^2)=(a-b)SinB
2√2(a^2-c^2)/8=(a-b)b/2√2
a^2-c^2=ab-b^2
a^2+b^2-c^2=ab
由余弦定理得
cosC=(a^2+b^2-c^2)/2ab=1/2
C=60