令(x^2+1)^(1/2)=t,则t≥1,且x^2=t^2-1.易知原条件相当于:
对于任意t>1,以下不等式恒成立:
2(t^2-1)-at+3>0
即
2t^2-at+1>0.①
令f(t)=2t^2-at+1,分两种情况讨论:
1.若-a/2(-2)≥1,则a≥4,此时前述条件相当于
f(a/4)>0
即
a^2/8-a^2/4+1>0
即
a^2
令(x^2+1)^(1/2)=t,则t≥1,且x^2=t^2-1.易知原条件相当于:
对于任意t>1,以下不等式恒成立:
2(t^2-1)-at+3>0
即
2t^2-at+1>0.①
令f(t)=2t^2-at+1,分两种情况讨论:
1.若-a/2(-2)≥1,则a≥4,此时前述条件相当于
f(a/4)>0
即
a^2/8-a^2/4+1>0
即
a^2