由于向量PF1*向量PF2=0,所以 PF1⊥PF2
一方面,由勾股定理得,
|PF1|²+|PF2|²=4c²=4(a²+1) (1)
另一方面,由||PF1|-|PF2||=2a,两边平方,得
|PF1|²+|PF2|²-2|PF1|•|PF2|=4a² (2)
(1)-(2),得2|PF1|•|PF2|=4
所以△F1PF2的面积 S= |PF1|•|PF2|/2=1
由于向量PF1*向量PF2=0,所以 PF1⊥PF2
一方面,由勾股定理得,
|PF1|²+|PF2|²=4c²=4(a²+1) (1)
另一方面,由||PF1|-|PF2||=2a,两边平方,得
|PF1|²+|PF2|²-2|PF1|•|PF2|=4a² (2)
(1)-(2),得2|PF1|•|PF2|=4
所以△F1PF2的面积 S= |PF1|•|PF2|/2=1