sn=n^2 *an,sn-1=(n-1)^2*an-1 用前者减后者,有
an=n^2an-(n-1)^2an-1
(n^2-1)an=(n-1)^2an-1
当n≥2时,
(n+1)an=(n-1)an-1
an/an-1=(n-1)/(n+1)
此时 a2/a1=(2-1)/(2+1)
a3/a2=(3-1)/(3+1)
an/a1=(n-1)!/[(n+1)!/2!] 得an=1/n(n+1)
剩下的等会,马上算.
sn=n^2 *an,sn-1=(n-1)^2*an-1 用前者减后者,有
an=n^2an-(n-1)^2an-1
(n^2-1)an=(n-1)^2an-1
当n≥2时,
(n+1)an=(n-1)an-1
an/an-1=(n-1)/(n+1)
此时 a2/a1=(2-1)/(2+1)
a3/a2=(3-1)/(3+1)
an/a1=(n-1)!/[(n+1)!/2!] 得an=1/n(n+1)
剩下的等会,马上算.