定义域x∈R
f(-x)=(-x)3+(-x)=-x3-x=-f(x)
f(x)是奇函数
任取x1 >x2>0
△y=f(x1)-f(x2)=(x1)3+x1-(x2)3-x2 (分解因式x3-y3=(x-y)(x2+xy+y2))
=(x1-x2)(x12+x22+x1x2)+(x1-x2)
=(x1-x2)(x12+x22+x1x2+1)
(x1-x2)>0 (x12+x22+x1x2+1)>0
△y>0 f(x)在(0,+∞)单调递增
f(x)是奇函数
∴f(x)在R上递增
定义域x∈R
f(-x)=(-x)3+(-x)=-x3-x=-f(x)
f(x)是奇函数
任取x1 >x2>0
△y=f(x1)-f(x2)=(x1)3+x1-(x2)3-x2 (分解因式x3-y3=(x-y)(x2+xy+y2))
=(x1-x2)(x12+x22+x1x2)+(x1-x2)
=(x1-x2)(x12+x22+x1x2+1)
(x1-x2)>0 (x12+x22+x1x2+1)>0
△y>0 f(x)在(0,+∞)单调递增
f(x)是奇函数
∴f(x)在R上递增