原方程为圆心在(2,3),半径为1的圆,其参数方程为x=2+cosQ,
y=3+sinQ,
x/y=(2+cosQ)/(3+sinQ)
经观察,当Q=0时,分子达到最大3,分母达到最小3,从而(x/y)max=1
x^2+y^2=(2+cosQ)^2+(3+sinQ)^2
=4+4cosQ+9+6sinQ+1=14+2(2cosQ+3sinQ)
=14+2√13sin(Q+arctan2/3)
因为sin(Q+arctan2/3)最大为1,
所以,(x^2+y^2)max=14+2√13
x=2+cosQ,Xmax=2+1=3