f(x)=-x^3+ax^2+bx+c
f(1)= -1+a+b+c
f′(x)=-3x^2+2ax+b
f′(1)=-3+2a+b
切线方程y-f(1))=f′(1)(x-1)
y=f′(1)(x-1)+f(1)=(-3+2a+b)(x-1)-1+a+b+c=_3x+1
所以a=0,b=0,c=2
f(x)=-x^3+2
g(x)=x^3+5
f(x)=-x^3+ax^2+bx+c
f(1)= -1+a+b+c
f′(x)=-3x^2+2ax+b
f′(1)=-3+2a+b
切线方程y-f(1))=f′(1)(x-1)
y=f′(1)(x-1)+f(1)=(-3+2a+b)(x-1)-1+a+b+c=_3x+1
所以a=0,b=0,c=2
f(x)=-x^3+2
g(x)=x^3+5