请大家帮我找一个数列或者函数图像的一题多解的数学题

2个回答

  • 已知Sn是等比数列前n项和,S3、S6、S9成等差数列,求证a2 a5 a8为等差数列.三种解法.

    证明一

    因为S3.S9.S6成等差数列

    2S9=S3+S6

    2a1(1-q^8)/(1-q)=a1(1-q^2)/(1-q)+a1(1-q^5)/(1-q)

    2(1-q^8)=2-q^2-q^5

    2q^8=q^2+q^5

    2q^7=q+q^4

    2a1q^7=a1q+a1q^4

    2a8=a2+a5

    所以a2.a8.a5成等差数列

    证明二:

    等比数列{an},各项均不能为0

    2S9=S3+S6

    (a4+a5+a6+a7+a8+a9)+(a7+a8+a9)=0

    (a4+a5+a6)=-2(a7+a8+a9)

    (1+q+q^2)=-2(q^3+q^4+q^5)

    1=-2q^3

    q^3=-1/2

    2a8-(a2+a5)=a2*(q^6-1-q^3)=a2*0=0

    所以2a8=a2+a5

    即a2,a8,a5成等差数列

    证明三

    证明:由已知设An=A1q^(n-1),q为公比且不为0.

    则q不为0也不为1时,Sn=[(q^n-1)/(q-1)]A1;

    当q=1时,Sn=nA1;

    ∵2S9=S3+S6,

    ∴2[(q^9-1)/(q-1)]A1=[(q^3-1)/(q-1)]A1+[(q^6-1)/(q-1)]A1,

    ∴2q^9=q3+q^6,∴q3(2q3+1)(q3-1)=0,

    ∴q3=1或-1/2,∴q=1或(-1/2)^(1/3),

    当q=1时,An=A1,则2A8-(A8+A5)=2A1-(A1+A1)=0,得证;

    当q=(-1/2)^(1/3)时,An=A1[(-1/2)^(1/3)]^(n-1);

    2A8-(A8+A5)

    =2×A1[(-1/2)^(1/3)]^(8-1)

    -{[A1[(-1/2)^(1/3)]^(2-1)]+[A1[(-1/2)^(1/3)]^(5-1)]}

    =(A1/2)(-1/2)^(1/3)-[A1(-1/2)^(1/3)+(-A1/2)(-1/2)^(1/3)]

    =(A1/2)(-1/2)^(1/3)-(A1/2)(-1/2)^(1/3)

    =0,得证.