∫(e,1)xlnxdx
=1/2∫(e,1)lnxdx²
=1/2*x²lnx(e,1)-1/2∫(e,1)x²dlnx
=1/2*x²lnx(e,1)-1/2∫(e,1)x²*1/xdx
=1/2*x²lnx(e,1)-1/2∫(e,1)xdx
=[1/2*x²lnx-x²/4](e,1)
=e²/2-e²/4+1/4
=(e²+1)/4
∫(e,1)xlnxdx
=1/2∫(e,1)lnxdx²
=1/2*x²lnx(e,1)-1/2∫(e,1)x²dlnx
=1/2*x²lnx(e,1)-1/2∫(e,1)x²*1/xdx
=1/2*x²lnx(e,1)-1/2∫(e,1)xdx
=[1/2*x²lnx-x²/4](e,1)
=e²/2-e²/4+1/4
=(e²+1)/4