由于z2=√2(sin45°+i·cos45°)·z1
从而由乘法的几何意义,得
向量OB是由向量OA按逆时针旋转45°,且长度变为√2·|OA|得到的.
于是,⊿OAB是以OA为直角边的等腰直角三角形.
故当|OA|最大时,S⊿OAB有最大值,|OA|最小时,S⊿OAB有最小值.
而| |z1| -2 |≤|z1-2|=1
即 1≤|z1|≤3
即 1≤|OA|≤3,
从而 S⊿OAB的最大值为9/2,最小值为1/2
由于z2=√2(sin45°+i·cos45°)·z1
从而由乘法的几何意义,得
向量OB是由向量OA按逆时针旋转45°,且长度变为√2·|OA|得到的.
于是,⊿OAB是以OA为直角边的等腰直角三角形.
故当|OA|最大时,S⊿OAB有最大值,|OA|最小时,S⊿OAB有最小值.
而| |z1| -2 |≤|z1-2|=1
即 1≤|z1|≤3
即 1≤|OA|≤3,
从而 S⊿OAB的最大值为9/2,最小值为1/2