证明:若(a,b)=1,m>0,则数列{a+bk},k=0,1,...中存在无限多个数与m互素

1个回答

  • 分析:题目要求m>0,若m=1,则结论显然,因为可以认为1和任意正整数互素.故只需针对m>1的情况予以证明.证明:(一)、证(a,a+b)=1 如若不然,设a和a+b有公约数n(n≥2),即a=t*n,a+b=s*n 则b=(a+b)-a=s*n-t*n=(s-t)*n 从而a,b有公约数n,与(a,b)=1 矛盾.因此(a,a+b)=1 (二)、证a与(a+b)中,至少有一个数与m互素.如若不然,设a和m有公约数n1(n1≥2),即a=t1*n1,m=s1*n1 a+b和m有公约数n2(n2≥2),即a+b=t2*n2,m=s2*n2 显然n1≠n2,不然不满足(a,a+b)=1 则s1*n1=s2*n2,n2=s1*n1/s2 b=(a+b)-a=t2*n2-t1*n1=t2*s1*n1/s2-t1*n1=n1*(t2*s1/s2-t1) 可见a,b有公约数n1,与(a,b)=1 矛盾.因此,a与(a+b)中,至少有一个数与m互素.(三)、证当数列{a+bk},k=0,1,...中有一个数与m互素时,则有无限多个数与m互素.由上面的结论,知a+b*i与m互素(i=0或i=1),则a+b*(i+j*m)也与m互素.(j=1,2,.) 如若不然,设a+b*(i+j*m)=x*n,m=y*n(n≥2) 则a+b*i=x*n-b*j*m=x*n-b*j*y*n=n*(x-b*j*y) 可见a+b*i与m有公约数n,出现矛盾.因此,a+b*(i+j*m)也与m互素.(j=1,2,.) 由于j=1,2,.有无限多个,所以数列{a+bk},k=0,1,...中存在无限多个数与m互素.证毕.