∵y=x(1-2x)
=-2[x-(1/4)]^2+(1/8)
∵0<x<1/2
∴-1/4<x-(1/4)<1/4
∴1/16>[x-(1/4)]^2≥0
0>[x-(1/4)]^2-(1/16)≥-1/16
0<-2[x-(1/4)]^2+(1/8)≤1/8
∴函数y=x(1-2x)在当x∈(0,1、2)时的最大值为1/8
∵y=x(1-2x)
=-2[x-(1/4)]^2+(1/8)
∵0<x<1/2
∴-1/4<x-(1/4)<1/4
∴1/16>[x-(1/4)]^2≥0
0>[x-(1/4)]^2-(1/16)≥-1/16
0<-2[x-(1/4)]^2+(1/8)≤1/8
∴函数y=x(1-2x)在当x∈(0,1、2)时的最大值为1/8