cosABC=AB^2+BC^2-AC^2/2AB*BC
=-cosBCD
=BC^2+CD^2-BD^2/2BC*CD
由上式:AB^2+BC^2-AC^2/2AB*BC=BC^2+CD^2-BD^2/2BC*CD
又因为:AB=CD,AD=BC
所以说:AB^2+BC^2-AC^2=BC^2+CD^2-BD^2
即:AC^2+BD^2=AB^2+BC^2+CD^2+DA^2
cosABC=AB^2+BC^2-AC^2/2AB*BC
=-cosBCD
=BC^2+CD^2-BD^2/2BC*CD
由上式:AB^2+BC^2-AC^2/2AB*BC=BC^2+CD^2-BD^2/2BC*CD
又因为:AB=CD,AD=BC
所以说:AB^2+BC^2-AC^2=BC^2+CD^2-BD^2
即:AC^2+BD^2=AB^2+BC^2+CD^2+DA^2