已知A、B与抛物线Y2=2X上的异于P(2,2)的两个动点,PA*PB=0,直线AB必过一定点,则定点的坐标为

1个回答

  • 假设直线AB为:y=k*(x-p)

    带入Y2=2X有:

    k*y*y-2y-2kp=0; y1+y2=2/k;y1*y2=-2p;

    x1+x2=(y1*y1+y2*y2)/2=(2/k)*(2/k)+4p;

    x1x2=p*p;

    PA*PB=0=(x1-2)*(x2-2)+(y1-2)*(y2-2)将上边的式子带入 得:

    p*p-6p-(2/k)*(2/k)-2(2/k)+8=(p-3)*(p-3)-(2/k+1)*(2/k+1)=0

    所以:1. p-3=2/k+1 得:k(4-p)=-2,故AB过(4,-2)定点.

    2. 3-p=2/k+1; 得:k(2-p)=2;有(2,2)点,舍去.

    故AB过(4,-2)定点.