伯努利不等式是说:对任意整数n≥0,和任意实数x≥-1,
有 (1+x)^n≥1+nx 成立;
如果n≥0是偶数,则不等式对任意实数x成立.
可以看到在n = 0,1,或x = 0时等号成立,而对任意正整数n≥2 和任意实数x≥-1,x≠0,有
严格不等式:
(1+x)^n>1+nx.
伯努利不等式经常用作证明其他不等式的关键步骤.
编辑本段
证明
设x>-1,且x≠0,n是不小于2的整数,则(1+x)^n≥1+nx.
证明:
用数学归纳法:
当n=1,上个式子成立,
设对n-1,有:
(1+x)^(n-1)>=1+(n-1)x成立,
则
(1+x)^n
=(1+x)^(n-1)(1+x)
>=[1+(n-1)x](1+x)
=1+(n-1)x+x+(n-1)x^2
>=1+nx
就是对一切的自然数,当
x>=-1,有
(1+x)^n>=1+nx
下面把伯努利不等式推广到实数幂形式:
若r ≤0或r ≥ 1,有(1+x)^r ≥ 1 + rx
若0 ≤ r ≤ 1,有(1+x)^r ≤ 1 + rx
这个不等式可以直接通过微分进行证明,方法如下:
如果r=0,1,则结论是显然的
如果r≠0,1,作辅助函数f(x)=(1+x)^r-(1+rx),那么f'(x)=r*(1+x)^(r-1)-r,则f'(x)=0 x=0;
下面分情况讨论:
1.0 < r < 1,则对于x > 0,f'(x) < 0;对于 1 < x < 0,f'(x) > 0.因此f(x)在x = 0处取最大值0,故得(1+x)^r ≤ 1+rx.
2.r < 0或r > 1,则对于x > 0,f'(x) > 0;对于 1 < x < 0,f'(x) < 0.因此f(x)在x = 0处取最小值0,故得(1+x)^r ≥ 1+rx
证毕