解题思路:(1)连接OD,根据角平分线定义和等腰三角形性质推行∠CAD=∠ODA,推出OD∥AC,根据平行线性质和切线的判定推出即可;
(2)连接BC,推出矩形ECGD,设AC=4a,AB=5a,求出OD、求出OG的长,推出CE=DG,求出CE长,求出AE,证△AEF和△OFD相似,得出比例式,代入求出即可.
(1)证明:连接OD,
∵AD平分∠CAB,
∴∠CAD=∠BAD,
∵OA=OD,
∴∠BAD=∠ADO,
∴∠CAD=∠ODA,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴直线DE是⊙O的切线.
(2)
连接BC交OD于G,
∵AB是直径,
∴∠ACB=90°,
∴cos∠BAC=[4/5]=[AC/AB],
设AC=4a,AB=5a,由勾股定理得:BC=3a,
∴OA=OD=OB=2.5a,
∵∠ECG=90°=∠DEC=∠EDG,
∴四边形ECGD是矩形,
∵OG为△ABC中位线,
∴G为BC中点
∴DE=CG=1.5a,
∵OD∥AE,OA=OB,
∴CG=BG,
∴OG=[1/2]AC=2a,
∴DG=EC=2.5a-2a=0.5a,
∴AE=AC+CE=4a+0.5a=4.5a,
∵OD∥AC,
∴△AEF∽△DOF,
∴[DF/AF]=[OD/AE]=[5/9].
点评:
本题考点: 切线的判定与性质;角平分线的定义;平行线的性质;等腰三角形的性质;勾股定理;圆周角定理;相似三角形的判定与性质;锐角三角函数的定义.
考点点评: 本题综合考查了等腰三角形的性质,平行线的性质,切线的性质和判定,相似三角形的性质和判定,锐角三角函数,勾股定理,角平分线定义等知识点的运用,题目较好,综合性强,有一定的难度,主要培养学生综合运用所学知识进行推理的能力.