an=a(n-1)+ (1/(n^2+n))
an - a(n-1) = 1/n -1/(n+1)
an -a1 = [1/n -1/(n+1)]+ [1/(n-1) -1/n] +..+ [1/2-1/3]
= 1/2 -1/(n+1)
an= 1-1/(n+1)
= n/(n+1)
an=a(n-1)+ (1/(n^2+n))
an - a(n-1) = 1/n -1/(n+1)
an -a1 = [1/n -1/(n+1)]+ [1/(n-1) -1/n] +..+ [1/2-1/3]
= 1/2 -1/(n+1)
an= 1-1/(n+1)
= n/(n+1)