三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=
3个回答
建坐标系
以AA1为Z轴,AB为x轴,AC为y轴
平面ACC1的法向量设为(1,0,0)
再算出平面BCC1的法向量
两法向量的夹角即为所求
相关问题
一个直三棱柱(A1B1C1为底面)被一平面所截得到的几何体,截面为ABC
棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为A,B,C,则A,B,C的大小
如图,已知斜三棱锥ABC﹣A1B1C1中,AB=AC,D为BC的中点.(1)若平面ABC垂直于平面BCC1B1,求证:A
如图所示,在斜三棱柱ABC-A 1 B 1 C 1 的底面△ABC中,∠A=90°,且BC 1 ⊥AC,过C 1 作C
如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,2AB=BC=BB1=a,截面ABC1与截面A1B1C交于DE
如图所示,三棱柱ABC-A1B1C1,D是BC上一点,且A1B//平面AC1D,D1是B1C1的中点,求证:平面A1BD
如图所示,在三棱柱ABC—A1B1C1中,A1A⊥平面ABC,AB=2BC,AC=AA1=3^1/2BC,证明A1⊥AB
如图在直三棱柱ABC-A1B1C1中,∠ACB=90°,M,N分别为所在棱上的中点.问:求证平面A1CB⊥平面ACC1A
斜三棱柱ABC-A1B1C1中,平面AA1C1C⊥底面ABC,BC=2,AC=2根号3,∠ABC=90°,AA1⊥A1C
如图,三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠ACB=90度,MN分别为A1B、B1C1