解联立方程 y² = 2x,y = x-4,
得到:x₁= 2,y₁= - 2; x₂= 8, y₂= 4
Area = ∫[ (y + 4) - (½ y²)] dy (积分区间:- 2 → 4)
= [½ y² + 4y - (1/6) y³] (积分区间:- 2 → 4)
= ½ ×(16 - 4) + 4×(4 + 2) - (1/6)×(64 + 8)
= 18
解联立方程 y² = 2x,y = x-4,
得到:x₁= 2,y₁= - 2; x₂= 8, y₂= 4
Area = ∫[ (y + 4) - (½ y²)] dy (积分区间:- 2 → 4)
= [½ y² + 4y - (1/6) y³] (积分区间:- 2 → 4)
= ½ ×(16 - 4) + 4×(4 + 2) - (1/6)×(64 + 8)
= 18