1 [Sn-S(n-1)][Sn+S(n-1)]=an^3
an[Sn+S(n-1)=an^3
an不为0
故Sn+S(n-1)=an^2
Sn+Sn-an=an^2
2Sn=an^2+an
2S(n-1)=[a(n-1)]^2+a(n-1)
两式相减得2an=an^2-[a(n-1)]^2+an-a(n-1)
化简得an-a(n-1)=1
an=n
2 bn=n2^n
由错位相减法得Tn=(n-1)2^(n+1)+2
Tn-2=(n-1)2^(n+1)
1 [Sn-S(n-1)][Sn+S(n-1)]=an^3
an[Sn+S(n-1)=an^3
an不为0
故Sn+S(n-1)=an^2
Sn+Sn-an=an^2
2Sn=an^2+an
2S(n-1)=[a(n-1)]^2+a(n-1)
两式相减得2an=an^2-[a(n-1)]^2+an-a(n-1)
化简得an-a(n-1)=1
an=n
2 bn=n2^n
由错位相减法得Tn=(n-1)2^(n+1)+2
Tn-2=(n-1)2^(n+1)