(1)作B′C′中点M 连接ME ∴ME‖BB′,MG‖B′D′
∴平面MEG‖平面BDD′D ∵EG∈平面MEG ∴ EG‖平面BB'D'D
(2)作DD′中点N 连接NC′ ∵BD‖B′D′ HN‖B′C′且HN=B′C
∴HB′‖NC′ ∵NC′‖DF ∴ DF‖HB′
又∵HB′∩B′D′=B′,BD∩DF=D
∴平面BDF//平面B'D'H;
(1)作B′C′中点M 连接ME ∴ME‖BB′,MG‖B′D′
∴平面MEG‖平面BDD′D ∵EG∈平面MEG ∴ EG‖平面BB'D'D
(2)作DD′中点N 连接NC′ ∵BD‖B′D′ HN‖B′C′且HN=B′C
∴HB′‖NC′ ∵NC′‖DF ∴ DF‖HB′
又∵HB′∩B′D′=B′,BD∩DF=D
∴平面BDF//平面B'D'H;