设1/(x^2-1)=1/(x+1)(x-1)
=a/(x+1)+b/(x-1)
=[(a+b)x+(b-a)]/(x+1)(x-1)
所以a+b=0,b-a=1
解得a=-1/2,b=1/2
所以∫1/√(x^2 - 1) dx=-1/2∫1/(x+1)dx+1/2∫1/(x-1)dx
=-1/2*ln|x+1|+1/2*ln|x-1|+C
=1/2*ln|(x-1)/(x+1)|+C
设1/(x^2-1)=1/(x+1)(x-1)
=a/(x+1)+b/(x-1)
=[(a+b)x+(b-a)]/(x+1)(x-1)
所以a+b=0,b-a=1
解得a=-1/2,b=1/2
所以∫1/√(x^2 - 1) dx=-1/2∫1/(x+1)dx+1/2∫1/(x-1)dx
=-1/2*ln|x+1|+1/2*ln|x-1|+C
=1/2*ln|(x-1)/(x+1)|+C