因为△ABC中AC=BC,∠ACB=Rt∠
所以可将三角形APC绕C旋转90度,CA与CB重合,P移动到D,连接PD
显然BD=PA=1,CD=PC=2,∠PCD=90°,∠APC=∠CDB
所以PD=2√2,∠PDC=∠DPC=45°
因为PB=3
所以PD^2+BD^2=PB^2
所以ΔPBD是直角三角形且∠PDB=90°
所以∠CDB=90°+45°=135°
所以∠APC=∠CDB=135°
因为△ABC中AC=BC,∠ACB=Rt∠
所以可将三角形APC绕C旋转90度,CA与CB重合,P移动到D,连接PD
显然BD=PA=1,CD=PC=2,∠PCD=90°,∠APC=∠CDB
所以PD=2√2,∠PDC=∠DPC=45°
因为PB=3
所以PD^2+BD^2=PB^2
所以ΔPBD是直角三角形且∠PDB=90°
所以∠CDB=90°+45°=135°
所以∠APC=∠CDB=135°