其实用L'Hospital法则证明会比较简单.
对c ∈ [a,b],由f(x)在c处可导,有f(x)在c连续,即lim{x → c} f(x)-f(c) = 0.
又显然lim{x → c} x-c = 0,因此x → c时(f(x)-f(c))/(x-c)是0/0型极限.
由L'Hospital法则,若右极限lim{x → c+} f'(x)存在,则有:
右导数f'(c+) = lim{x → c+} (f(x)-f(c))/(x-c) = lim{x → c+} (f(x)-f(c))'/(x-c)' = lim{x → c+} f'(x).
同理若左极限lim{x → c-} f'(x)存在,则有左导数f'(c-) = lim{x → c-} f'(x).
f(x)在c可导,故f'(c-) = f'(c+) = f'(c).
因此若f'(x)在c存在左右极限,则lim{x → c-} f'(x) = f'(c) = lim{x → c+} f'(x),即f'(x)在c连续.
即f'(x)没有第一类间断点.
无穷型间断点类似.
若lim{x → c+} f'(x) = +∞,可得f'(c+) = +∞,与f(x)在c可导矛盾.
不过要说明若lim{x → c+} f'(x) = ∞则lim{x → c+} f'(x) = +∞或lim{x → c+} f'(x) = -∞,
还是用Darboux定理比较方便.
因为介值性要求在f'(x)的正值和负值之间总有取0的点.
所以在lim{x → c+} f'(x) = ∞的条件下,f'(x)在充分接近c时只能恒正或恒负.