解设圆心(0,1)到直线l:mx-y+1-m=0的距离为d
则由垂径定理知
d^2=r^2-(AB/2)^2
即d^2=5-17/4
即d^2=3/4
即d=√3/2
又由圆心(0,1)到直线l:mx-y+1-m=0的距离
d=/-m//√[m^2+(-1)^2]=√3/2
即m^2/(1+m^2)=3/4
即3+3m^2=4m^2
即m^2=3
即m=±√3
故直线方程为√3x-y+1-√3=0
或-√3x-y+1+√3=0
解设圆心(0,1)到直线l:mx-y+1-m=0的距离为d
则由垂径定理知
d^2=r^2-(AB/2)^2
即d^2=5-17/4
即d^2=3/4
即d=√3/2
又由圆心(0,1)到直线l:mx-y+1-m=0的距离
d=/-m//√[m^2+(-1)^2]=√3/2
即m^2/(1+m^2)=3/4
即3+3m^2=4m^2
即m^2=3
即m=±√3
故直线方程为√3x-y+1-√3=0
或-√3x-y+1+√3=0