解y=(x²+2)/2√x²+1
=(x²+1+1)/2√x²+1
=[(x²+1)+1]/2√x²+1
=1/2[(x²+1)+1]/√x²+1
=1/2[√(x²+1)+1/√(x²+1)]
令t=√(x²+1),则t≥1
即y=1/2(t+1/t)(t≥1)
该函数在t数[1,正无穷大)是增函数,即当t=1时,y有最小值y=1/2(1+1/1)=1
即函数y=(x²+2)/2√x²+1最小值为1.
解y=(x²+2)/2√x²+1
=(x²+1+1)/2√x²+1
=[(x²+1)+1]/2√x²+1
=1/2[(x²+1)+1]/√x²+1
=1/2[√(x²+1)+1/√(x²+1)]
令t=√(x²+1),则t≥1
即y=1/2(t+1/t)(t≥1)
该函数在t数[1,正无穷大)是增函数,即当t=1时,y有最小值y=1/2(1+1/1)=1
即函数y=(x²+2)/2√x²+1最小值为1.