设α0,α,1,...,αn-r为Ax = b (b ≠ o)的n-r +1个线性无关的解向量,且的A 秩为r ,证明α
1个回答
因为向量组含n-r个向量,且都是Ax=0 的解
所以只要证明向量组线性无关就可以了
相关问题
已知α1...αs的秩为r,证明α1.αs中任意r个线性无关向量构成极大无关组
设向量组α1,α2,…,αr线性无关,证明向量组β1=α1+αr,β2=α2+αr,…,βr-1=αr-1+αr,βr=
设β1=α1,β2=α1+α2,βn=α1+α2+……αr,且向量组α1,α2……αr线性无关
若α1,α2.αr线性无关,证明β,α1,α2.αr线性无关的充要条件是β不能由α1,α2.αr线性表示.
有关向量的秩和极大线性无关组设向量组α1,α2.…αs(1)的秩为r,向量β可由(1)线性表出,则{α1,α2.…αs,
α为n维列向量,A为m*n矩阵,α1,α2.αs线性无关,A的秩为n,那么(Aα1,Aα2.Aαs)无关吗
设n阶矩阵A的秩为n-2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为______.
线代证明题设向量组Ⅰα1,α2,L,αm的秩为r,证明:向量组α1,α2,L,αm,β的秩仍为r的充要条件是β可有向量组
若向量组组α、b、r线性无关,而向量α+b,b+r,mr+α线性相关,则实数m的值
线性代数设 αi=(ai1,ai2,…,ain)T(i=1,2,…,rn)是n维列向量,且α1,α2,…,αr线性无关,