如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.

2个回答

  • 解题思路:根据角平分线的定义∠COD=∠EOD,所以∠COB的度数等于180°-∠AOB-∠EOD-∠COD,然后代入数据计算即可.

    ∵∠EOD=28°46′,OD平分∠COE,

    ∴∠COD=∠EOD=28°46′,

    ∵∠AOB=40°,

    ∴∠COB=180°-∠AOB-∠EOD-∠COD,

    =180°-40°-28°46′-28°46′,

    =82°28′.

    故答案为:82°28′.

    点评:

    本题考点: 角的计算.

    考点点评: 本题主要考查角的度数的运算,读懂图形分清角的和差关系比较重要,还要注意角是60进制,这也是同学们容易出错的地方.