已知抛物线y^2=2px(p>0)的焦点为F,点P是抛物线上的一点,且其纵坐标为4,|PF|=4

1个回答

  • 抛物线y^2=2px(p>0)的焦点为F,点P是抛物线上的一点,且其纵坐标为4,|PF|=xP+p/2=4,

    ∴xP=4-p/2,16=2p(4-p/2),p^2-8p+16=0,p=4.

    (1)y^2=8x.①

    (2)P(2,4),∠APB的角平分线与x轴垂直,

    ∴PA,PB的倾角互补,

    设AP:x=m(y-4)+2,②

    代入①,y^2-8my+32m-16=0,

    y1=4=yP,y2=8m-4=yA,

    代入②,xA=m(8m-8)+2=8m^2-8m+2,

    同理,以-m代m,得yB=-8m-4,xB=8m^2+8m+2,

    ∴AB的斜率=(yA-yB)/(xA-xB)=16m/(-16m)=-1.

    (3)直线AB过点(1,-1),

    ∴AB:x=-y,代入①,y^2+8y=0,y1=0,y2=-8,

    ∴|AB|=|y1-y2|√2=8√2.