先化简,
f(x)=sin(2x-π/6)
(1)最小正周期
T=2π/2=π
(2)x∈[0,π/4]
2x-π/6∈[-π/6,π/3]
∴ f(x)单调递增
最小值为
f(0)=sin(-π/6)=-1/2
最小值为
f(π/4)=sin(π/3)=根号3/2
∴ 函数f(x)在区间[0,π/4]上的取值范围为
[-1/2,根号3/2]
先化简,
f(x)=sin(2x-π/6)
(1)最小正周期
T=2π/2=π
(2)x∈[0,π/4]
2x-π/6∈[-π/6,π/3]
∴ f(x)单调递增
最小值为
f(0)=sin(-π/6)=-1/2
最小值为
f(π/4)=sin(π/3)=根号3/2
∴ 函数f(x)在区间[0,π/4]上的取值范围为
[-1/2,根号3/2]