如图.在圆O中,AB是直径,CD是弦.且CD平分∠ACB.∠ADC=30°,AC=4

1个回答

  • (1)△ADB是怎么样的△,说明理由,

    △ADB是个直角三角形,因为AB是直径,点D在圆上.

    (2)分别求出CB,AD,CD的长

    角ACB=90度

    角ACD=角BCD=角ACB/2=45度

    角ADC=30度

    角CAD=180-角ACD-角ADC=180-45-30=105度

    AD/SIN(角ACD)=AC/SIN(角ADC)

    AD=(AC/SIN(角ADC))*SIN(角ACD)=(4/SIN(30))*SIN(45)=5.6569

    CD=(AC^2+AD^2-2*AC*AD*COS(角CAD))^0.5

    =(4^2+5.6569^2-2*4*5.6569*COS(105))^0.5

    =7.33869

    角CDB=90-角ADC=90-30=60度

    角CBD=180-角CDB-角BCD=180-60-45=75度

    CD/SIN(角CBD)=BD/SIN(角BCD)=BC/SIN(角BDC)

    BD=(CD/SIN(角CBD))*SIN(角BCD)

    =(7.33869/SIN(75))*SIN(角45)

    =5.3723

    BC=(CD/SIN(角CBD))*SIN(角BDC)

    =(7.33869/SIN(75))*SIN(60)

    =6.5797