cos3X-sin3X化成三角函数一般形式,

1个回答

  • 先分开看sin3a 和 cos3a

    sin3a=3sina-4sin³a

    cos3a =4cos³a-3cosa

    推导方法如下:

    sin3a

    =sin(2a+a)

    =sin2a×cosa+cos2a×sina

    =2×sina×cosa×cosa+(1-2sin²a)×sina

    =2sina×(1-sin²a)+(1-2sin²a)×sina

    =2sina×(1-sin²a)+(1-2sin²a)×sina

    =2sina-2sin³a+sina-2sin³a

    =3sina-4sin³a

    cos3a

    =cos(2a+a)

    =cos2a×cosa-sin2a×sina

    =(2cos²a-1)×cosa-2×sina×cosa×sina

    =(2cos²a-1)×cosa-2(sin²a)×cosa

    =(2cos²a-1)cosa-2(1-cos²a)cosa

    =2cos³a-cosa-2cosa+2cos³a

    =4cos³a-3cosa

    cos3a-sin3a

    =(4cos³a-3cosa)-(3sina-4sin³a)

    =4cos³a+4sin³a-3cosa-3sina