用泰勒公式:
cosx=1-x^2/2+x^4/4!+o(x^5)
e^(-1/(2x^2))=1-1/(2x^2)+[1/(2x^2)]^2/2+o(x^5)
所以:lim (cosx-(e^-1/2 (x^2))/ (x^4))
=lim(x^4/4!+(1/(2x^2))^2/2)/x^4
=1/24+1/8=1/6
用泰勒公式:
cosx=1-x^2/2+x^4/4!+o(x^5)
e^(-1/(2x^2))=1-1/(2x^2)+[1/(2x^2)]^2/2+o(x^5)
所以:lim (cosx-(e^-1/2 (x^2))/ (x^4))
=lim(x^4/4!+(1/(2x^2))^2/2)/x^4
=1/24+1/8=1/6