向量a=(cos(2x–π/3),cosx+sinx),b=(1,cosx–sinx),
∴f(x)=ab=cos(2x-π/3)+(cosx+sinx)(cosx-sinx)
=(1/2)cos2x+(√3/2)sin2x+cos2x
=(3/2)cos2x+(√3/2)sin2x
=√3sin(2x+π/6),
f(A)=√3sin(2A+π/6)=√3/2,
∴sin(2A+π/6)=1/2,π/6
向量a=(cos(2x–π/3),cosx+sinx),b=(1,cosx–sinx),
∴f(x)=ab=cos(2x-π/3)+(cosx+sinx)(cosx-sinx)
=(1/2)cos2x+(√3/2)sin2x+cos2x
=(3/2)cos2x+(√3/2)sin2x
=√3sin(2x+π/6),
f(A)=√3sin(2A+π/6)=√3/2,
∴sin(2A+π/6)=1/2,π/6