设正方形边长为1,则CF=1/4,AF=5/4,过F点做FG⊥AB于G
DE=1/2
AE=√5/2
Sin∠BAF=FG/AF=4/5
Sin∠DAE =DE/AE=√5/5
Cos∠DAE=DA/AE=2√5/5
因为Sin∠BAF=2*Cos∠DAE*Sin∠DAE
所以∠BAF=2∠DAE
设正方形边长为1,则CF=1/4,AF=5/4,过F点做FG⊥AB于G
DE=1/2
AE=√5/2
Sin∠BAF=FG/AF=4/5
Sin∠DAE =DE/AE=√5/5
Cos∠DAE=DA/AE=2√5/5
因为Sin∠BAF=2*Cos∠DAE*Sin∠DAE
所以∠BAF=2∠DAE