判断无穷数列 sin(π/2)+sin(2π/2)+sin(3π/2)+sin(4π/2)+… 的敛散性.
1个回答
=1+0-1+0+1+0-1+0+……
显然他的值是1,1,0,0,1,1,0,0,……
即在0和1上震荡
而不是收敛于一个确定的值
所以是发散
相关问题
求大神做做这道题sinπ/6+sin2π/6+......+sinnπ/6 求敛散性
y=sin(π/4+x/2)sin(π/4-x/2) =sin(π/4+x/2)sin[π/2-(π/4+x/2)]
tan(3π-α)/sin(π-α)sin(3/2π-α)+sin(2π-α)cos(α-7/2π)/sin(3/2π+
为什么sin11π/3=sin(4π-π/3)=-sinπ/3=-根号3/2,sin(4π-π/3)=-sinπ/3我不
Sin(π+π/6)Sin(2π+π/6)Sin(3π+π/6).Sin(2008π+π/6)
用比较法判断∑ sin(π/n)的敛散性
sin(5π/2+ π/4) 怎么变成 sin(π/2+π/4)
sinπ,sinπ/2,sin3π/2,cosπ/2,cos-π/2,cos/2π/3 等等一系列怎么算
sin-3π/4= cos11π/6= tan13π/4= sin7π/2= cos-3π/2= sin10π/3=
已知方程sin(α-3π)=2cos(α-4π),求sin(π−α)+5cos(2π−α)2sin(3π2−α)−sin