因为f(x)=ax^3+cx+d (a≠0)是R上的奇函数,所以f(x)=-f(-x),得d=0
因为x=1时取极值-2,所以f'(1)=0,f(1)=-2
得3a+c=0,a+c=-2
所以a=1,c=-3
所以f(x)=x^3-3x
f'(x)=3x^2-3
令f'(x)=0,得x1=-1,x2=1
所以f(x)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减
f(-1)=2,f(3)=27-9=18
所以在[-3,3]上f(x)max=18
因为f(x)=ax^3+cx+d (a≠0)是R上的奇函数,所以f(x)=-f(-x),得d=0
因为x=1时取极值-2,所以f'(1)=0,f(1)=-2
得3a+c=0,a+c=-2
所以a=1,c=-3
所以f(x)=x^3-3x
f'(x)=3x^2-3
令f'(x)=0,得x1=-1,x2=1
所以f(x)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减
f(-1)=2,f(3)=27-9=18
所以在[-3,3]上f(x)max=18