1,f(x)=sin²x+√3sinxcosx+2cos²x
=1-cos²x+√3/2 sin2x+2cos²x
=cos²x+√3/2 sin2x+1
=(1+cos2x)/2+√3/2 sin2x+1
=1/2cos2x+√3/2 sin2x+3/2
=sin(2x+π/6)+3/2
所以函数f(x)是由y=sin2x的图像向左平移π/6个单位再向上平移3/2个单位得到的.
2,先求五个关键点:
函数的1/4周期是( 2π/2) *(1/4)=π/4
令2x+π/6=0得x=-π/12
-π/12+π/4=π/6
π/6+π/4=5π/12
5π/12+π/4=2π/3
2π/3+π/4=11π/12
∴五个关键点是(-π/12,3/2),(π/6,5/2),(5π/12,3/2),(2π/3,1/2),(11π/12,3/2)
请复核数字计算