已知函数f(x)=sin^x+根号3sinxcosx+2cos^x,x属于R

1个回答

  • 1,f(x)=sin²x+√3sinxcosx+2cos²x

    =1-cos²x+√3/2 sin2x+2cos²x

    =cos²x+√3/2 sin2x+1

    =(1+cos2x)/2+√3/2 sin2x+1

    =1/2cos2x+√3/2 sin2x+3/2

    =sin(2x+π/6)+3/2

    所以函数f(x)是由y=sin2x的图像向左平移π/6个单位再向上平移3/2个单位得到的.

    2,先求五个关键点:

    函数的1/4周期是( 2π/2) *(1/4)=π/4

    令2x+π/6=0得x=-π/12

    -π/12+π/4=π/6

    π/6+π/4=5π/12

    5π/12+π/4=2π/3

    2π/3+π/4=11π/12

    ∴五个关键点是(-π/12,3/2),(π/6,5/2),(5π/12,3/2),(2π/3,1/2),(11π/12,3/2)

    请复核数字计算