分部积分法:
∫√(9+x^2)dx
=x√(9+x^2)dx-∫x^2/√(9+x^2)dx
=x√(9+x^2)dx-∫(9+x^2-9)/√(9+x^2)dx
=x√(9+x^2)dx-∫√(9+x^2)dx+9∫1/√(9+x^2)dx
=x√(9+x^2)dx-∫√(9+x^2)dx+9ln(x+√(9+x^2))
∴∫√(9+x^2)dx=1/2×x√(9+x^2)dx+9/2×ln(x+√(9+x^2))+C
分部积分法:
∫√(9+x^2)dx
=x√(9+x^2)dx-∫x^2/√(9+x^2)dx
=x√(9+x^2)dx-∫(9+x^2-9)/√(9+x^2)dx
=x√(9+x^2)dx-∫√(9+x^2)dx+9∫1/√(9+x^2)dx
=x√(9+x^2)dx-∫√(9+x^2)dx+9ln(x+√(9+x^2))
∴∫√(9+x^2)dx=1/2×x√(9+x^2)dx+9/2×ln(x+√(9+x^2))+C