空间角计算,如图如图所示,求角X

4个回答

  • 设AB=x,BC=y,CD=z

    连接AD,易知:AD为体对角线,则AD^2=x^2+y^2+z^2

    而AO=AB/cosa=x/cosa,DO=DC/cosb=z/cosb

    故cosX=(AO^2+DO^2-AD^2)/2AO*DO=[(x^2/cos^2a +z^2/cos^2b -x^2-y^2-z^2)]/[2x/cosa *z/cosb]

    易知:x*tana +z*tanb=y

    故x^2tan^2a+z^2tan^2b+2xztanatanb=y^2

    故x^2/cos^2a +z^2/cos^2b -x^2-y^2-z^2=x^2/cos^2a +z^2/cos^2b -x^2-z^2-x^2tan^2a+z^2tan^2b+2xztanatanb

    =-2xzsinasinb/cosacosb

    那么cosX=(-2xzsinasinb/cosacosb)/(2xz/(cosacosb)=-sinasinb

    所以X=π-arccos(sinasinb)

    有点烦,但并不难.