设a为常数,解方程cox(x-45度)=sin(2x)+a

2个回答

  • cos(x-π/4)=sin2x+a

    cosxcos(π/4)+sinxsin(π/4)=2sinxcosx+a

    (根号2/2)*cosx+(根号2/2)*sinx=2sinxcosx+a

    (根号2/2)(cosx+sinx)=2sinxcosx+a

    两边同时平方,得:

    (1/2)(cosx+sinx)^2=(2sinxcosx+a)^2

    (1/2)[sin^2(x)+cos^2(x)+2sinxcosx]=[4sin^2(x)cos^2(x)+a^2+4asinxcosx]

    由于sin^2(x)+cos^2(x)=1

    则:

    (1/2)*[1+2sinxcosx]=[4sin^2(x)cos^2(x)+a^2+4asinxcosx]

    设T=sinxcosx

    =(2sinxcosx)/2

    =(1/2)sin2x

    则:

    (1+2T)/2=(4T^2+a^2+4aT)

    8T^2+(8a-2)T+(2a^2-1)=0

    则由求根公式,得:

    T=(1/2)sin2x

    =[(1-4a)+根号(9-8a)]/16

    或 =[(1-4a)-根号(9-8a)]/16

    则:sin2x=[(1-4a)+根号(9-8a)]/8

    或 =[(1-4a)-根号(9-8a)]/8

    则x=arcsin{[(1-4a)+根号(9-8a)]/4}

    或=arcsin{[(1-4a)-根号(9-8a)]/4}