(1)可以选择②∠C=∠E或③∠B=∠D,中的一种.
∵在△CAB和△EAD中,∠CAE=∠BAD,BC=DE,
∴∠CAB=∠EAD,
又∵∠C=∠E,
∴△CAB≌△EAD(利用“AAS”)
(2)①由(1)得AB=AD,12 x-2 =72 x2-4 ,
解得x=4,
经检验x=4是原方程的根,所以x=4;
或(BC=DE)2x-y+7=7 2 x-y+1解得x=4;
或(AC=AE)由(y-6)2=4,解得y=8或4;
当x=4,y=8时,AB=AD=6,BC=DE=7,AC=AE=4;
当x=4,y=4时,AB=AD=6,BC=DE=11,AC=AE=4,此时三角形不能构成,因此不合题意.
所以x=4,y=8.
②当x=4,y=8时,原式=1 4×8 +1 8×12 +1 12×16 +1 16×20 ++1 (4n+4)(4n+8) ,
=1 16 [1 1×2 +1 2×3 +1 3×4 +…+1 (n+1)(n+2) ]
=1 16 (1-1 2 +1 2 -1 3 +1 3 -1 4 +…+1 n+1 -1 n+2 )
=1 16 (1-1 n+2 )=n+1 16n+32 .