a-tb=(cos55-tcos25,sin55-tsin25)
|a-tb|=√(cos55-tcos25)^2+(sin55-tsin25)^2
=√cos55^2-2tcos55cos25+t^2cos25^2+sin55^2-2tsin55sin25+t^2sin25^2
=√1+t^2-2t(sin35cos25+sin25cos35)
√(1+t^2)-2tsin60
=√t^2-√3 t+1
=√[(t-√3/2)^2+1/4]
所以t=√3/2时,最小值为1/2
a-tb=(cos55-tcos25,sin55-tsin25)
|a-tb|=√(cos55-tcos25)^2+(sin55-tsin25)^2
=√cos55^2-2tcos55cos25+t^2cos25^2+sin55^2-2tsin55sin25+t^2sin25^2
=√1+t^2-2t(sin35cos25+sin25cos35)
√(1+t^2)-2tsin60
=√t^2-√3 t+1
=√[(t-√3/2)^2+1/4]
所以t=√3/2时,最小值为1/2