已知a.b.c是三角形ABC的三边长,求证:关于x的一元二次方程cx^2-(a+b)x+c/4=0有两个不相等的实数根
3个回答
判别式△=(a+b)²-c²
=(a+b+c)(a+b-c)
显然a+b+c>0
三角形两边之和大于第三边
所以a+b-c>0
所以△>0
所以有两个不相等的实数根
相关问题
已知a、b、c是三角形ABC的三边,关于x的一元二次方程(a+b)x平方-2cx-(a-b)=0有两个相等的实数根,
已知a、b、c是三角形ABC三条边的长,那么关于x的一元二次方程cx^2+(a+b)x+c/4=0必有两个不相等的实数根
已知:关于x的一元二次方程(b-c)x2+(c-a)x+a-b=0有两个相等的实数根.求证:2b=a+c.
已知:关于x的一元二次方程(b-c)x2+(c-a)x+a-b=0有两个相等的实数根.求证:2b=a+c.
已知:关于x的一元二次方程(b-c)x2+(c-a)x+a-b=0有两个相等的实数根.求证:2b=a+c.
已知:关于x的一元二次方程(b-c)x2+(c-a)x+a-b=0有两个相等的实数根.求证:2b=a+c.
已知:关于x的一元二次方程(b-c)x2+(c-a)x+a-b=0有两个相等的实数根.求证:2b=a+c.
已知:关于x的一元二次方程(b-c)x2+(c-a)x+a-b=0有两个相等的实数根.求证:2b=a+c.
已知a,b,c为三角形的三边长,且关于x的一元二次方程(b-c)x^2+2(a-b)x+b-a=0有两个相等的实数根,那
已知a、b、c是三角形ABC的三边,且一元二次方程x²+2(b-c)X+(c-a)(a-b)=0,有两个实数根