自变量区间为对称区间,函数为偶函数 "√"表示根号
则原定积分可写成y=2∫[0,1]√(1-x^2)dx
设x=sint ,则x∈[0,1]时,t∈[0,π/2] 下限为0,上限为π/2
则y=2∫[0,π/2]√1-(sint)^2dt=2∫[0,π/2]cosxdt=2∫[0,π/2]dsint=2sint|[0,π/2]=2
自变量区间为对称区间,函数为偶函数 "√"表示根号
则原定积分可写成y=2∫[0,1]√(1-x^2)dx
设x=sint ,则x∈[0,1]时,t∈[0,π/2] 下限为0,上限为π/2
则y=2∫[0,π/2]√1-(sint)^2dt=2∫[0,π/2]cosxdt=2∫[0,π/2]dsint=2sint|[0,π/2]=2