记f(x)=a(x-x1)(x-x2)(x-x3)
f'(x)=a(x-x1)(x-x2)+a(x-x2)(x-x3)+a(x-x1)(x-x3),记p=a(x1-x2)(x2-x3)(x1-x3)
k1=f'(x1)=a(x1-x2)(x1-x3)=p/(x2-x3)
k2=f'(x2)=a(x2-x1)(x2-x3)=p/(x3-x1)
k3=f'(x3)=a(x3-x1)(x3-x2)=p/(x1-x2)
1/k1+1/k2+1/k3=(x2-x3+x3-x1+x1-x2)/p=0
记f(x)=a(x-x1)(x-x2)(x-x3)
f'(x)=a(x-x1)(x-x2)+a(x-x2)(x-x3)+a(x-x1)(x-x3),记p=a(x1-x2)(x2-x3)(x1-x3)
k1=f'(x1)=a(x1-x2)(x1-x3)=p/(x2-x3)
k2=f'(x2)=a(x2-x1)(x2-x3)=p/(x3-x1)
k3=f'(x3)=a(x3-x1)(x3-x2)=p/(x1-x2)
1/k1+1/k2+1/k3=(x2-x3+x3-x1+x1-x2)/p=0