由题意的
a(n+1)=(3*an+2)/(an+2)
上式两边同加1的
a(n+1)+1=(3*an+2)/(an+2)+1
a(n+1)+1=4*(an+1)/an+2
两边取倒数
1/(a(n+1)+1)=(an+2)/4*(an+1)
=(an+1+1)/4*(an+1)
=1/4+(1/4)*(1/an+1)
∵bn=1/(an+1)
∴b(n+1)=1/4+(1/4)*bn
上式可化为
b(n+1)-1/3=(1/4)*(bn-1/3)
所以数列{bn-1/3}是公比为1/4的等比数列
bn-1/3=(b1-1/3)*(1/4)^(n-1)
=(1/(0.5+1)-1/3)*(1/4)^(n-1)
=(1/3)*(1/4)^(n-1)
bn=(1/3)*(1/4)^(n-1)+1/3